
Differentially Flat Learning-Based Model Predictive Control Using a
Stability, State, and Input Constraining Safety Filter

Adam W. Hall1 †, Melissa Greeff2 †, and Angela P. Schoellig3 †

Abstract— Learning-based optimal control algorithms
control unknown systems using past trajectory data and a
learned model of the system dynamics. These controllers
use either a linear approximation of the learned dynamics,
trading performance for faster computation, or nonlinear
optimization methods, which typically perform better but
can limit real-time applicability. In this work, we present a
novel nonlinear controller that exploits differential flatness
to achieve similar performance to state-of-the-art learning-
based controllers but with significantly less computational
effort. Differential flatness is a property of dynamical sys-
tems whereby nonlinear systems can be exactly linearized
through a nonlinear input mapping. Here, the nonlinear
transformation is learned as a Gaussian process and is
used in a safety filter that guarantees, with high probability,
stability as well as input and flat state constraint satisfac-
tion. This safety filter is then used to refine inputs from
a flat model predictive controller to perform constrained
nonlinear learning-based optimal control through two suc-
cessive convex optimizations. We compare our method
to state-of-the-art learning-based control strategies and
achieve similar performance, but with significantly better
computational efficiency, while also respecting flat state
and input constraints, and guaranteeing stability.

Index Terms— Machine learning, Predictive control for
nonlinear systems, Robotics.

I. INTRODUCTION

IN recent years, interest has grown in controlling safety-
critical systems whose dynamics are partially unknown,

like unmanned aerial vehicles, driverless cars, and mobile
manipulators. Classically, guaranteeing safety and stability
of these uncertain systems results in overly conservative
behaviour, limiting their usage in real tasks. Using machine
learning and past trajectory data inside classical control frame-
works to learn the system dynamics has proven to be an
effective, safe learning-based control technique, but often
requires slow nonlinear optimizations and can suffer from
poor computational stability and efficiency [1]. For example,
Gaussian process model predictive control (GPMPC) uses a
Gaussian process (GP) to model the uncertain dynamics. This

1Adam W. Hall is jointly with the Learning Systems and Robotics Lab
(www.learnsyslab.org) and the STARS lab (starslab.ca) at the University
of Toronto Institute for Aerospace Studies (UTIAS), Toronto, Canada.
Email: adam.hall@robotics.utias.utoronto.ca

2Melissa Greeff is with the Robora Lab (www.roboralab.com) at the
Department of Electrical and Computer Engineering, Queen’s Univer-
sity, Kingston, Canada.

3Angela P. Schoellig is with the Learning Systems and Robotics Lab
(www.learnsyslab.org) at the Technical University of Munich and the
University of Toronto, and the Munich Institute for Robotics and Machine
Intelligence (MIRMI), Munich, Germany.

†All authors are with the Vector Institute for Artificial Intelligence,
Toronto, Canada.

Fig. 1. Our proposed architecture enables high-performance trajectory
tracking for uncertain differentially flat systems by developing a learning-
based model predictive controller that is computationally efficient to
compute. We do this by solving two convex optimization problems: 1)
a convex quadratic program in flat model predictive control that finds the
flat input v∗k and state z∗k to track a reference zref

k ; 2) a second-order
cone program in the safety filter that uses a learned representation of
the flat nonlinear input mapping v = ψ(z, u), with posterior prediction
mean µ(·) and covariance σ(·), to perform probabilistic feedback
linearization guaranteeing asymptotic stability, as well as state and input
constraint satisfaction.
learned model is then used inside a robust model predictive
control (MPC) framework. GPMPC has been used on mobile
robots [2], quadrotors [3], and other autonomous systems.

A drawback of GPMPC is its computational complexity.
It either requires powerful on-board computation or remote
computation of inputs, limiting its use in real systems. Stan-
dard GPs require all of their training data to be stored in
memory and their posterior mean and covariance predictions
are computationally expensive, even when using approximate
methods [4]—many approximations and ‘tricks’ are used to
achieve real-time operability. There are, however, structural as-
sumptions about the dynamics that can improve computational
speed without sacrificing performance, such as incorporating
a control-affine structure, and differential flatness.

Differential flatness is a property of many nonlinear dynam-
ical systems that enables their transformation into linear sys-
tems through a nonlinear input mapping, called exact lineariza-
tion [5]—this is an exact transformation, not an approximation.
Linear control techniques can then be used to compute a flat
input that is subsequently transformed through this nonlinear
mapping and applied to the real system. Many real robotic
systems are differentially flat, like quadrotors [6], flexible-joint
manipulators [7], and mobile robots [8], to list a few. In the
literature, differential flatness has been exploited to control
nonlinear systems using linear MPC [6], called flat MPC
(FMPC), which achieves similar performance to nonlinear
MPC while greatly improving computational efficiency.

Differential flatness has also been exploited in safe learning-
based controllers. In [9], the nonlinear input mapping and
its inverse are learned from trajectory data and used in a
robust linear quadratic regulator (RLQR) formulation to con-
trol an uncertain system, while guaranteeing an ultimate upper

ar
X

iv
:2

30
7.

10
54

1v
1

 [
ee

ss
.S

Y
]

 2
0

Ju
l 2

02
3

www.learnsyslab.org
https://starslab.ca/
www.roboralab.com
www.learnsyslab.org

bound on tracking error. This method is more computationally
efficient than GPMPC, however, still involves a demanding
nonlinear optimization and cannot explicitly handle input
constraints or state constraints.

More recently, [10] has used a learned representation of the
nonlinear input mapping inside of a safety filter that finds
the input that best matches the desired input from a flat
linear controller while guaranteeing probabilistic asymptotic
stability. In particular, the safety filter is formulated as a
Second-Order Cone Program (SOCP) by exploiting differential
flatness and the affine-control structure of the dynamics. This
SOCP is more computationally efficient than GPMPC and
RLQR and can explicitly handle input constraints, but it cannot
enforce any state constraint guarantees.

In this work, we build upon [10] to provide three main
contributions:

• a novel safe learning-based MPC for nonlinear, differen-
tially flat, control-affine systems that can be solved via
two successive convex optimizations;

• a novel safety filter that guarantees, with high probability,
asymptotically stable tracking error, and flat-state and
input constraint satisfaction, modelled as an SOCP;

• a comparison with GPMPC, in simulation, that shows our
approach achieves similar performance but is at least 10
times more computationally efficient.

The advantage of MPC, used in this work, over linear quadratic
regulation (LQR) used in [10], is anticipating the reference
and constraint boundaries which avoids infeasible states and
aggressive inputs, as shown in our simulated examples. All
code is available at github.com/utiasDSL/fmpc socp.

II. PROBLEM STATEMENT

We consider a single-input continuous-time control-affine
nonlinear system

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

with initial condition x(0) = x0, where x(t) ∈ Rn and u(t) ∈
R are the state and input of the system at time t ∈ R≥0. The
maps f : Rn → Rn and g : Rn → Rn are unknown, but are
assumed to be locally Lipschitz continuous. It is assumed that
a prior model of the unknown system is given by

ẋ(t) = f̃(x(t)) + g̃(x(t))u(t). (2)

Assumption 2.1: The system (1) and the prior model (2) are
single-input single-output systems and differentially flat with
respect to a known flat output y = h(x(t)), with y ∈ R.

Definition 2.1 (Differential Flatness [5]): A smooth single
input nonlinear system is differentially flat if there exists a
flat output y ∈ R such that the input and all states can be
uniquely determined from this flat output and its derivatives
z = [y, ẏ, . . . , y(n−1)]T , and there exists smooth, invertible
functions x = ϕ−1(z), u = ψ−1(z, v), where v = y(n).

Lemma 2.1 (Linearized Flat Dynamics [5], [7]): A differ-
entially flat system (1) can be transformed into a linear system
in the Brunowsky Canonical form

ż(t) = Az(t) +B v(t), (3)

where the new input v is related to the system input via the
nonlinear mapping

v = ψ(z, u). (4)

Furthermore, if the system is control affine, then this mapping
has the specific form

v = α(z) + β(z)u. (5)
Remark 2.1: Given that the mappings f and g in (1) are

unknown, α and β are also unknown.
Our system (1) is subject to input constraints U := {u ∈

R | umin ≤ u ≤ umax} and convex constraints on the flat-state
vector z ∈ Z .

Remark 2.2: The constraints are enforced on the flat state
z. While the flat state differs from the state x, in many robotic
systems it still represents physical quantities that are con-
strained. For example, in quadrotors, it represents the position,
velocity, and acceleration; in flexible joint manipulators, it
represents the output shaft joint angle and its derivatives [7];
and for mobile robotics, the commonly used unicycle model’s
flat state comprises position, velocity, and acceleration [8].

The objective is to design a computationally efficient con-
troller for the unknown system (1) that achieves high tracking
performance of a reference trajectory zref, guarantees tracking
convergence with high probability, and respects input and state
constraints.

III. BACKGROUND

A. Discrete-Time Control Lyapunov Function

Given a constant sampling period δt, the discretization of
(3) becomes

zk+1 = Ad zk +Bd vk, (6)

where Ad and Bd are Euler discretizations of A and B.
Further, zk = z(δtk) and vk = v(δtk) are time-sampled flat
states and inputs at time step k ∈ N≥0.

Consider the smooth reference zref(t) : [0, T) → Rn

and vref(t) : [0, T) → R sampled every kδt to yield the
discrete reference signals zref

k = zref(kδt), vref
k = vref(kδt).

The tracking error can be defined with respect to this reference
as ek = zk − zref

k . Given an error feedback control policy
vk = −Kek + vref

k with gain K ∈ R1×n, the error dynamics
become ek+1 = (Ad−Bd K)ek.

Definition 3.1: If a function V : Rn → R≥0 satisfies

V (0) = 0 and V (ek) > 0, ∀ek ∈ Z \{0}
V (ek+1) < V (ek), ∀ek ∈ Z \{0} (7)

for the error dynamics, then it is called a Control Lyapunov
Function (CLF) and its existence guarantees the asymptotic
stability of the closed-loop dynamics.

Lemma 3.1 ([7]): Given Assumption 2.1, if the transforma-
tion (4) is known, uk can be chosen to cancel the nonlinear
term (4) and find a vk such that the resulting linear error
dynamics are Hurwitz.

Remark 3.1: The true dynamics are unknown, and thus
the inverse transform u = ψ(z, v) is unknown and is often
approximated using the prior model (2). Such control methods,
however, are not robust to model mismatch in (4) [6].

https://github.com/utiasDSL/fmpc_socp

B. Gaussian Processes (GPs)

GPs are used to model nonlinear functions ψ(a) :
Rdim(a) → R. They encapsulate a prior over possible func-
tions. As data are collected, the possible functions for ψ(a)
are refined and the GP obtains a posterior distribution over
functions [11]. GPs assume that all collected data is jointly
Gaussian with a prior mean and covariance. GP regression is
the process of finding the hyperparameters that optimize the
log-likelihood of the marginal distribution over the sampled
function data.

Given a query point a∗, the posterior prediction condi-
tioned on the data D = {(ai, ψ̂(ai)}ND

i=1 is given by the
distribution ψ(a∗)|D ∼ N

(
µ(a∗), σ2(a∗)

)
. Here, the pos-

terior mean and covariance are µ(a∗) = k(a∗)K−1Ψ̂, and
σ(a∗) = k(a∗,a∗) − k(a∗)K−1kT (a∗), where k(a∗) =
[k(a∗,ai), . . . , k(a

∗,aND)], Ki,j = k(ai,aj), and Ψ̂ =
[ψ̂(a1), . . . , ψ̂(aND)]

T . See [11] for more details.

IV. METHODOLOGY

In our proposed architecture, shown in Figure 1, we exploit
the control-affine and differentially flat structure of the system
(1) to design a learning-based model predictive controller.
Our method solves two convex optimization problems at each
time-step: a convex FMPC to determine the flat input to
the linear dynamics (6) that best tracks a given reference
trajectory; and a safety filter formulated as an SOCP that en-
sures probabilistic asymptotic stability, probabilistic flat-state
constraint satisfaction, and input constraint satisfaction, even
when (1) is uncertain. By leveraging system data, we develop
a controller that achieves high tracking performance despite
unknown system dynamics (1), but is still computationally
efficient, making onboard input computation more practical
relative to the current state-of-the-art.

This section follows the components of our controller given
in Figure 1. First, in Section IV-A, the FMPC is formulated,
assuming the system dynamics (1) and the input mapping
u = ψ−1(z, v) are known. As (1) is not known, a learned
representation of (4) using GPs is used. In particular, our
approach exploits the affine structure of (1) and (4), as detailed
in Section IV-B. Finally, in Section IV-C, the probabilistic
feedback linearization (Section IV-C.1), probabilistic asymp-
totic stability (Section IV-C.2), and probabilistic flat-state
constraint (Section IV-C.3), are formulated as an SOCP safety
filter (Section IV-C.4).

A. Flat Model Predictive Control

FMPC iteratively solves a convex finite-horizon optimal
control problem (OCP) to control the nonlinear flat system
(1). In this section, the FMPC formulation is presented and
builds on the FMPC formulation in [6]. We highlight how
FMPC can be designed such that the error dynamics, with
respect to a flat reference zref, are asymptotically stable when
the system dynamics (1) are known.

Assumption 4.1 ([12]): There exists a cost function ℓ that
is bounded by comparison functions ζ̄, ζ ∈ K∞ such that
ζ(∥zk − zref

k ∥) ≤ infvk ℓ(zk, z
ref
k , vk) ≤ ζ̄(∥zk − zref

k ∥) ∀ zk ∈
Z .

Remark 4.1: We consider cost functions of the form
ℓ(zk, z

ref
k , vk) = (zk − zref

k)T Q(zk − zref
k) + v2kr, where Q ∈

Rn×n, Q ≻ 0, r ∈ R, r > 0.
The convex finite-horizon OCP solved at each time step is

given by

min
zk|k:k+N ,vk|k:k+N−1

JN (zk|k+1:k+N , z
ref
k|k+1:k+N , vk|k:k+N−1)

s.t. zk|k = ẑk (8)
zk|i+1 = Ad zk|i +Bd vk|i, ∀i ∈ [k, k +N − 1]

zk|i ∈ Z ∀i ∈ [k, k +N],

where N ∈ N is the horizon length, ẑk is the measured flat
state at time step k, JN (·, ·, ·) =

∑k+N
i=k+1 ℓ(zk|i, z

ref
k|i, vk|i−1)

is the cost function, and the flat states zk|k:k+N =
[zk, . . . , zk+N], the flat reference zref

k|k:k+N = [zref
k , . . . , z

ref
k+N],

and the flat inputs vk|k:k+N−1 = [vk, . . . , vk+N−1] are se-
quences for time step k to time step k+N , computed at time
step k. The optimal solution to OCP (8) at time step k is
given by the sequences z∗k|k:k+N and v∗k|k:k+N−1. We use the
notation z∗k := z∗k|k and v∗k := v∗k|k for the optimal flat state
and flat input computed at time step k. This state-input pair
is used in the safety filter in Section IV-C. This OCP then
applies the zero-order hold input u(t) = ψ−1(z∗k, v

∗
k) ∀ t ∈

[kδt, (k + 1)δt) to the system.
Assumption 4.2 ([12]): There exists a comparison function

ξ ∈ K∞ and an integer s ∈ N such that, for all z ∈ Z , the
inequality infv Js(z, z

ref, v) ≤ ξ(infv ℓ(z, zref, v)) holds for all
s ∈ N.

Lemma 4.1 ([12, Thm. 6.2], [13, Sec. 8.3]): Given
Assumptions 4.1 and 4.2, there exists an N ∈ N such
that the sampled-data MPC, defined by OCP (8), is
asymptotically stable in the closed-loop with respect to the
reference zref. Furthermore, in the unconstrained case (i.e.,
where the flat-state constraint zi ∈ Z is not present), the
OCP (8) permits an equivalent closed-form solution

v∗k = −K(zk − zref
k) + vref

k , (9)

where K ∈ R1×n is the equivalent gain matrix.

B. Gaussian Process Learning

FMPC, presented in the previous section, relies on knowing
(1) to compute the input uk = ψ−1(z∗k, v

∗
k) from the optimized

trajectory (i.e., z∗k and v∗k). Given (1) is unknown, we propose
to learn the map (4) as a GP. We thus encode the control-
affine structure of (5) in the kernel selection of the GP. This
structure enables us to formulate probabilistic stability and
state constraints in our filter in Section IV-C as an SOCP.
Specifically, we select the following kernel [14]

k(ai,aj) = kα(zi, zj) + uikβ(zi, zj)uj + δi,jσ
2
η. (10)

Assumption 4.3: kα(·, ·) and kβ(·, ·) are positive definite
and bounded kernels.

Lemma 4.2: [10, Lem. 2] Given Assumption (4.3), the
affine kernel in (10) is also bounded and positive definite.
Given a query point a = (z, u) and a regressed GP condi-
tioned on ND noisy observations D = {ai, ψ̂(ai)}ND

i=1, the

posterior mean prediction µ(a) and variance σ(a) are linear
and quadratic in u, respectively,

µ(a) = γ1(z) + γ2(z)u, (11)

σ2(a) = γ3(z) + γ4(z)u+ γ5(z)u
2, (12)

where

γ1(z) = kα(z)K
−1Ψ̂, γ2(z) = kβ(z)K

−1Ψ̂,

γ3(z) = kα(z, z)− kα(z)K
−1kT

α(z),

γ4(z) = −(kβ(z)K
−1kT

α(z) + kα(z)K
−1kT

β (z)),

γ5(z) = kβ(z, z)− kβ(z)K
−1kT

β (z).

Here, Ψ̂ ∈ RND , with Ψ̂i = ψ̂(ai), kα(z) ∈ R1×ND

with kα,i(z) = kα(z, zi), kβ(z) ∈ R1×ND with kβ,i(z) =
kβ(z, zi), and K ∈ RND×ND with elements Ki,j = k(ai,aj).

C. Safety Filter

In this section, we use the learned GP model of (5) in a
safety filter design with three components: 1) probabilistic
feedback linearization, 2) a probabilistic stability constraint,
and 3) a probabilistic state constraint. We then show how to
implement the safety filter as a SOCP.

1) Probabilistic Feedback Linearization: We aim to find uk
such that the flat input vk in (6) seen by the system closely
matches the desired flat input v∗k, optimized in FMPC. We
select the input uk that minimizes the expected square distance
between the desired flat input v∗k and the output of the GP
model for (4) as

min
uk

E
[
∥ψ(z∗k, uk)− v∗k∥2

]
. (13)

When we query the GP model of (1) at a = (z∗k, uk) the pos-
terior prediction of (4) is normally distributed ψ(z∗k, uk)|D =
N

(
µ(z∗k, uk), σ

2(z∗k, uk)
)
. Consequently, (13) can be written

as minuk
(µ(z∗k, uk)−v∗k)2+σ2(z∗k, uk). Exploiting the affine

form of the GP kernel selection allows for the mean and
covariance to be substituted by (11) and (12), respectively,
further simplifying (13) to

min
uk

(γ∗22 + γ∗5)u
2
k + (2γ∗1γ

∗
2 − 2γ∗2v

∗ + γ∗4)uk, (14)

where γ∗i := γi(z
∗
k).

Remark 4.2: Following from [10], the optimization prob-
lem in (14) is convex since γ∗5 ≥ 0 as it is the predicted
covariance of β(z) in (5), and the minimization is quadratic
in the optimization variable uk.

2) Probabilistic Stability Constraints: We formulate a proba-
bilistic stability constraint using the CLF from (7) to ensure
that the input uk guarantees probabilistic stability for the
closed-loop system, despite (1) being unknown.

To formulate this constraint, consider the Lyapunov function
of the form V (ek) = eTk Pek and a nominal flat input
vnom
k = −Kek + vref

k , using the gain computed in (9). Then,
the error at k + 1 can be expressed as ek+1 = Ad ek −
Bd Kek + Bd(ψ(z

∗
k, uk) − vnom

k). After using the discrete-
time algebraic Ricatti equation, the CLF decrease condition

(7) can be expressed as

eTk [P−Q−rKT K]ek

−2eTk (Ad−Bd K)T PBd(ψ(z
∗
k, uk)− vnom

k) (15)

+(ψ(z∗k, uk)− vnom
k)2 Bd

T PBd ≤ eTk Pek − ϵ,

where ϵ > 0 is a small constant to allow for the inequality to
be non-strict. Thus, the left-hand side of (15) is quadratic in
ψ(z∗k, uk) which we have learned as a GP. We conservatively
bound the last term (ψ(z∗k, uk) − vnom

k)2 Bd
T PBd as the

eigenvalues of Bd
T PBd are proportional to δ2t , making this

term small relative to the other terms. Using the fact that the
posterior mean prediction (11) is affine in uk and that uk is
bounded umin ≤ uk ≤ umax, (15) can be written as

−w1(ψ(z
∗
k, uk)− vnom

k) ≤ w3 − w2, (16)

where

w1 := 2eTk (Ad−Bd K)T PBd,

w2 := Bd
T PBd max

s={umin,umax}
∥µ(z∗k, s)− vnom

k ∥2,

w3 := eTk [Q+rKT K]ek − ϵ.

Assumption 4.4: The nonlinear single-input control affine
system (1) permits a bounded reproducible kernel Hilbert
space (RKHS) norm ∥ψ(zk, uk)∥kern with respect to the kernel
(10) used in the GP, and the GP’s observation noise η is
uniformly bounded by ση .

Lemma 4.3: Let δ ∈ (0, 1). Given Assumption 4.4,
Pr{−w1(µ(z

∗
k, uk)−vnom

k) ≤ w3−w2−|w1|β1/2σ(z∗k, uk)} ≥
1 − δ, where β = 2∥ψ(z∗k, uk)∥kern + 300γ ln3((N + 1)/δ),
and γ ∈ R is the maximum information gain.

Proof: Given Assumption 4.4 and Theorem 3 in [15],
the mean prediction of a GP is bounded with respect to the
true function evaluation as per Pr{∀a ∈ A, |ψ(a) − µ(a)| ≤
β1/2σ(a)} ≥ 1 − δ. When considering this probabilistic
bound in the context of the left-hand side of (16) and
expanding the absolute value, the upper inequality bound
becomes −w1(ψ(z

∗
k, uk)− vnom

k) ≤ −w1(µ(z
∗
k, uk)− vnom

k)−
|w1|β1/2σ(z∗k, uk). Using this expression with Theorem 3
from [15] means that the inequality holds true with probability
1 − δ. Using the probabilistic bound in (16), yields the
probabilistic constraint given in the lemma.

3) Probabilistic State Constraints: We also ensure that
zk+1 ∈ Z , with high probability, by taking into account the
uncertainty in the prediction of zk+1 due to the uncertainty in
the learned mapping ψ(z∗k, uk). A constraint is required here
beyond the state constraint in (8) as the input can be modified
by the safety filter, and the uncertainty in ψ(z∗k, uk) must be
accounted for. We thus first determine the uncertainty in zk+1,
then use it to tighten Z to ensure zk+1 ∈ Z .

Using the posterior mean prediction from the GP in (6), the
mean of the next state becomes µz

k+1 = Ad z
∗
k+Bd µ(z

∗
k, uk).

For brevity, we only consider uncertainty in µz
k+1 due to

σ(z∗k, uk). Thus, the uncertainty in µz
k+1 is given as σ2

zk+1
=

Bd σ
2(z∗k, uk)Bd

⊤, which we use to tighten the constraint set
Z using probabilistic reachable sets (PRS).

Definition 4.1 (One-Step PRS [16]): Given the residual er-
ror of a random sample away from its mean ∆k = µZ

k − zk,

a set R is called a One-Step PRS of probability level δ if
Pr(∆k+1 ∈ R|∆k = 0) ≥ δ.

Remark 4.3: If we define an error term ∆z
k+1 = µz

k+1 −
zk+1, we can define the tightened constraints on µz

k+1 as

µz
k+1 ∈ Z ⊖R(σzk+1

), (17)

where ⊖ represents the Pontryagin set difference.
Lemma 4.4 (Probabilistic Half-Space Constraints):

Consider a half-space constraint given by Zhs := {zk|hT zk ≤
b} with h ∈ Rn and b ∈ R+ defining the constraint. Then,
given the uncertainty in the dynamics propagation, the
tightened constraint becomes

Zhs(σzk+1
) :=

{
zk+1|hT zk+1 ≤ b− ρ(δ)

√
hTσ2

zk+1
h
}
,

which guarantees that the constraint will be satisfied given the
uncertainty in the dynamics, with probability level δ. Here, ρ is
the quantile function of a standard Gaussian random variable.

Proof: Given the uncertainty in the next state, σzk+1

and under the random variable ∆z
k+1, the marginal distribution

becomes hT∆z
k+1 ∼ N

(
0,hTσ2

zk+1
h
)

. Using the quantile
function of a standard Gaussian ρ(δ) with probability level δ
a PRS can be constructed

Rz(σz) :=
{
∆|hT∆z

k+1 ≤ ρ(δ)
√
hTσ2

zk+1
h
}
, (18)

as follows from [16]. Using (18) in (17), the probabilistic half-
space constraint is as shown in Lemma 4.4.

4) Safety Filter as an SOCP: Here, we formulate the safety
filter as an SOCP.

Theorem 4.1 (Second-Order Cone Program): Given
Assumptions 2.1, 4.1, 4.2, 4.3, and 4.4, the optimization
problem given in (14) subject to the probabilistic asymptotic
stability constraint given by Lemma 4.3 and probabilistic
state constraint Lemma 4.4 can be written as an SOCP

min
ū

[2γ∗1γ
∗
2 − 2γ∗2v

∗
k + γ∗4 , 1]ū,

s.t. ∥Āiū+ b̄i∥ ≤ c̄Ti ū+ d̄i i ∈ {1, 2, 3}, (19)
umin ≤ uk ≤ umax,

where ū = [uk, q]
T , Āi ∈ R2×2, b̄i ∈ R2, c̄i ∈ R2, d̄i ∈ R.

Proof: First, a dummy variable q ≥ (γ∗2
2 + γ∗5)u

2
k is

introduced into the optimization problem to reformulate the
cost as linear in ū. Moreover, 0 ≥ (γ∗22 + γ∗5)u

2
k − 4q which

can be rewritten as (1 + q)2 ≥ 4(γ∗22 + γ∗5)u
2 + (1 − q)2.

Note that both sides of this inequality are positive, so this
can be rewritten as a standard SOC constraint where Ā1 =

diag
{
2
√
γ∗22 + γ∗5 ,−1

}
, b̄1 = [0, 1]T , c̄1 = [0, 1]T , and

d̄1 = 1. The optimization objective then becomes [2γ∗1γ
∗
2 −

2γ∗2v
∗ + γ∗4 , 1]ū.

Next, consider the probabilistic stability constraint (16). Us-
ing the posterior prediction mean and covariance expressions
(11) and (12), it is noted that√

γ∗3 + γ∗4uk + γ∗5u
2
k =

∥∥∥∥∥∥
√γ∗5uk +

γ∗
4

2
√

γ∗
5√

γ∗3 −
γ∗2
4

4γ∗
5

∥∥∥∥∥∥
2

. (20)

Using this, the stability constraint can be rewritten as an
SOC constraint with Ā2 = diag

{
w1

√
γ∗5 , 0

}
, the vectors

k → 0.
if Training offline then

Train the nonlinear map v = ψ(z, u).
while kδt ≤ T do

Measure the current flat state ẑk.
Find the optimal flat state and input z∗k, v

∗
k by

solving the OCP (8).
Find u∗k that minimizes (19) using z∗k and v∗k.
Apply u∗k to the real system.
Set k ← k + 1.
if Training online then

Update the nonlinear map with measured data.
end

Algorithm 1: Proposed control algorithm.

b̄2 =

[
w1

γ∗
4

2
√

γ∗
5

, w1

√
γ∗3 −

γ∗2
4

4γ∗
5

]T
and c̄2 = [

w1γ
∗
5

β1/2 , 0]
T , and

the scalar d̄2 = (w1γ
∗
2 + w3 − w2)/β

1/2.
Finally, the probabilistic state constraint from Lemma 4.4

is transformed into an SOC constraint. First, see that the term√
hTσ2

zk+1
h =

√
hT Bd Bd

T hσ(z∗k, uk). This has the same
form as the stability constraint, allowing (20) to be used to
transform the state constraint into an SOC constraint with

Ā3 = diag
{
ws

√
γ∗5 , 0

}
, b̄3 =

[
ws

γ∗
4

2
√

γ∗
5

, ws

√
γ∗3 −

γ∗2
4

4γ∗
5

]T
,

c̄3 = [−hT Bd γ
∗
2 , 0]

T and d̄3 = −hT Ad z
∗
k−hT Bd γ

∗
1 + b,

with ws = ρ(δ)
√

hT Bd Bd
T h

The full controller algorithm is presented in Algorithm 1.
Remark 4.4: The SOC form is maintained when uncertainty

in the measured flat state ẑk is considered, but is not shown
here for brevity.

V. SIMULATION

Our controller was assessed on three tasks using a horizontal
1-D quadrotor. The quadrotor dynamics, as in [9] and [10], are
given by ẍ = Γ sin(θ) − γẋ and θ̇ = 1

τ (u − θ) where x is
the horizontal position, θ is the pitch angle of the quadrotor,
and the commanded pitch angle u is the system input. Here,
Γ = 10, γ = 0.3 and τ = 0.2 are model parameters. This
model is flat in the output yk = xk, with the flat state zk =
[xk, ẋk, ẍk]

T . All algorithms are run at 50 Hz, use the same
gain matrices Q and r, and horizons.

As shown in Figure 2a, FMPC with the safety filter
(FMPC+SOCP) is compared against an MPC using an inac-
curate model (Γ = 20, γ = 0, and τ = 0.05, chosen to over-
estimate thrust with no drag), and discrete linear quadratic
regulator (DQLR) using the same inaccurate model, and a
trained GPMPC where the uncertain dynamics are modelled
as a GP inside a robust MPC formulation [16]. Training data
was gathered via Latin hypercube sampling of states within
the max and min values seen from the reference trajectories.
Squared Exponential kernels were used for all GP kernels,
trained offline. For this system, vk =

...
x k, a higher-order

derivative of the position, was measured from the simulation.
On a real system, this would need to be estimated, which can
be hard due to accumulated noise, presenting a limitation of
our approach. The root mean squared errors were 0.02m and
0.07m for FMPC+SOCP and GPMPC, respectively. The aver-
age solve time per step was (0.018±0.006) s for FMPC+SOCP

0 2 4 6 8 10
Time (s)

−0.3

−0.2

−0.1

0.0

0.1

Po
sit

io
n

Er
ro

r (
m

)

MPC
DLQR
FMPC+SOCP (ours)
GPMPC

(a) Tracking error for yref(t) = 0.2t sin(0.9t).

0 2 4 6 8 10
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Ho
riz

on
ta

l P
os

iti
on

 (m
)

DLQR Known
FMPC+SOCP (ours)
Reference

(b) Tracking step with −10◦ ≤ uk ≤ 10◦.

0 2 4 6 8 10
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Ho
riz

on
ta

l P
os

iti
on

 (m
)

Constraint
DLQR+SOCP
FMPC+SOCP (ours)
Reference

(c) Step with constraint xk ≤ 0.51.

Fig. 2. In 2a, the tracking error of our Flat MPC with safety filter (FMPC+SOCP) is compared with an MPC and DLQR with inaccurate prior models,
and a trained GPMPC [16]. In 2b the FMPC+SOCP is compared against a DLQR with perfect dynamics knowledge subject to input constraints, and
in 2c FMPC+SOCP is compared with DLQR with the safety filter (DLQR+SOCP) subject to a constraint on the position. Red × indicates a point of
controller infeasibility or constraint violation. We see that FPMPC+SOCP performs similarly to GPMPC, while respecting input and state constraints.

0 2 4 6 8 10
Time (s)

−30

−20

−10

0

10

20

30

In
pu

t (
de

g)

Constraint
DLQR+SOCP
FMPC+SOCP (ours)

Fig. 3. Input comparison while tracking yref(t) = 0.2t sin(0.9t)
subject to velocity constraints ẋk ≤ 1.0 and input constraints |uk| ≤
30◦.
and (0.29± 0.04) s for GPMPC when run on a 16 GB RAM
desktop using an AMD 3900xt CPU.

The FMPC+SOCP evidently performs better than GPMPC,
while solving the task more than 10 times faster. This occurs in
part because having the GP inside the nonlinear optimization
can lead to worse local minima—something that nonlinear
MPC is already prone to. Additionally, the GP used in GPMPC
requires an independent GP for each dimension of the state,
meaning roughly five times as many training points were used
in GPMPC than in our approach.

In Figure 2b, FMPC+SOCP is compared with DLQR where
(1), and thus (4), are known perfectly, but subject to input
constraints |uk| ≤ 10◦. The inclusion of DLQR is pertinent
as it represents the infinite-horizon optimal solution. In this
case, DLQR’s inputs are clipped if the desired input exceeds
the limit. We see that even in this case, the FMPC+SOCP
outperforms the DLQR, as it is designed to account for input
constraints.

Finally, FMPC+SOCP is compared against an inaccurate
DLQR with the safety filter (DLQR+SOCP) on tracking a step
trajectory with a state constraint xk ≤ 0.51 in Figure 2c and
tracking yref(t) = 0.2t sin(0.9t) subject to velocity constraints
ẋk ≤ 1.0 and input constraints |u| ≤ 30◦ in Figure 3. In
Figure 2c, the predictive nature of the FMPC+SOCP clearly
anticipates the step response and settles faster than the DLQR.
Additionally, DLQR+SOCP reaches an infeasible state as it
overshoots the reference because it could not predict into the
future nor account for the state constraint. The FMPC+SOCP
avoided violating the constraint boundary due to its predictive
nature, remaining feasible. In Figure 3, we see how the FMPC
input anticipates the velocity limit, resulting in smooth inputs
that never reach their limits. DLQR, however, gives very
aggressive, and potentially damaging, changes in input to
avoid violations.

VI. CONCLUSION

Current safe learning-based controllers’ real-time applicabil-
ity has been limited by computational performance. The pro-
posed FMPC+SOCP approach performs similarly to state-of-
the-art learning-based controllers, but is 10 times more com-
putationally efficient, while guaranteeing probabilistic asymp-
totic stability, probabilistic state constraint satisfaction, and
input constraint satisfaction.

REFERENCES

[1] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based control
to safe reinforcement learning,” Annu. Rev. Control Rob. Auton. Syst.,
vol. 5, no. 1, pp. 411–444, 2022.

[2] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained
learning-based NMPC enabling reliable mobile robot path tracking,” Int.
J. Rob. Res., vol. 35, no. 13, pp. 1547–1563, 2016.

[3] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, “Data-driven
MPC for quadrotors,” IEEE Rob. Autom. Lett., vol. 6, no. 2, pp. 3769–
3776, Apr. 2021.

[4] J. Quinonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate Gaussian process regression,” J. Machine Learning
Research, vol. 6, pp. 1939–1959, 2005.

[5] M. Fliess, J. Levine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 61, no. 6, pp. 1327–1361, 1995.

[6] M. Greeff and A. P. Schoellig, “Flatness-based model predictive control
for quadrotor trajectory tracking,” in 2018 IEEE/RSJ Int. Conf. Intelli-
gent Robots and Systems (IROS), Madrid, Spaine, 2018.

[7] A. Isidori, Nonlinear Control Systems. London: Springer, 1995.
[8] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems. Boca

Raton: CRC Press, Taylor & Francis Group, 2004.
[9] M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust

learning-based tracking control using gaussian processes,” IEEE Control
Syst. Lett., vol. 5, no. 4, pp. 1121–1126, 2021.

[10] M. Greeff, A. W. Hall, and A. P. Schoellig, “Learning a stability filter
for uncertain differentially flat systems using Gaussian processes,” in
2021 60th IEEE Conf. Decision and Control (CDC). IEEE, 2021, pp.
789–794.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA: The MIT Press, 2006.

[12] L. Grune and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms. Switzerland: Springer, 2017.

[13] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge: Cambridge University Press, 2017.

[14] F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath,
“Gaussian process-based min-norm stabilizing controller for control-
affine systems with uncertain input effects and dynamics,” in 2021
American Control Conf. (ACC). IEEE, 2021, pp. 3683–3690.

[15] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-
theoretic regret bounds for Gaussian process optimization in the bandit
setting,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[16] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using Gaussian process regression,” IEEE Trans. Control Syst.
Technol., vol. 28, no. 6, pp. 2736–2743, 2020.

	INTRODUCTION
	Problem Statement
	Background
	Discrete-Time Control Lyapunov Function
	Gaussian Processes (GPs)

	Methodology
	Flat Model Predictive Control
	Gaussian Process Learning
	Safety Filter
	Probabilistic Feedback Linearization
	Probabilistic Stability Constraints
	Probabilistic State Constraints
	Safety Filter as an SOCP

	Simulation
	Conclusion
	References

